
PROPRIETARY RIGHTS STATEMENT

This document contains information which is proprietary to the VITAL Consortium.
Neither this document nor the information contained herein shall be used, duplicated or communicated by any means to any

third party, in whole or in parts, except with prior written consent of the Consortium

SEVENTH FRAMEWORK PROGRAMME
Specific Targeted Research Project

Project Number: FP7–SMARTCITIES–2013(ICT)
Project Acronym: VITAL
Project Number: 608682

Project Title:
Virtualized programmable InTerfAces for
innovative cost-effective IoT depLoyments in
smart cities

D4.1.1 Intelligent virtualized
discovery of resources V1

Document Id: VITAL-D411-141220-draft

File Name: VITAL-D411-141220-draft.docx

Document reference: Deliverable 4.1.1

Version: Draft

Editors: Nathalie Mitton, Valeria Loscrí, Riccardo Petrolo

Organisation: INRIA

Date: 20/12/2014

Document type: Deliverable

Security: PU (Public)

Copyright 2014 VITAL Consortium

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 1 1

DOCUMENT HISTORY

Rev. Author(s) Organisation(s) Date Comments
V01 Riccardo Petrolo INRIA 29/09/2014 Initial version of the document

V02 Riccardo Petrolo INRIA 12/11/2014 Assignment of Partners Responsibilities
and minor fixes

V03 Riccardo Petrolo INRIA 18/11/2014 Adding REST, JAVA EE, Introduction
JSON-LD

V04 Riccardo Petrolo INRIA 19/11/2014 Intro Service Discovery, ICOs Discovery

V05 Anne Helmreich NUIG 21/11/2014 Adding Data Management Service

V06 Tomas Geraghty NUIG 21/11/2014 Contributions on DMS

V07
Fotis

Stamatelopoulos,
Angelos Lenis

SiLo 21/11/2014 Added Orchestration/BPM module

V08 Riccardo Petrolo INRIA 22/11/2014 Adding details Service Discovery, ICOs
Discovery

V09 Valeria Loscrí INRIA 24/11/2014 Adding Intelligent Discovery, update
Architecture

V10 Riccardo Petrolo INRIA 24/11/2014
Polishing, Adding Filtering, Adding

Tables in Intelligent Discovery and ICO
Discoverer

V11 Umut Yıldırım Atos 25/11/2014 Added Interfaces to CEP Module

V12 Riccardo Petrolo INRIA 25/11/2014 Minor fixes, polishing

V13 Valeria Loscrí INRIA 26/11/2014 Adding details in Intelligent Discovery
and ICO Discoverer

V14 Nathalie Mitton,
Riccardo Petrolo INRIA 01/12/2014 Fixing document structure

V15 Riccardo Petrolo INRIA 02/12/2014 Minor fixes

V16 Kasper de Graaf,
Malcolm Garrett Images&Co 04/12/2014 Quality Review

V17 Andrea Martelli Santer Reply 04/12/2014 Technical Review

V18 Riccardo Petrolo INRIA 04/12/2014 Changed based on T/Q reviews

V19 Valeria Loscrí INRIA 15/12/2014 Circulated for SB Approval

Draft Martin Serrano NUIG 20/12/2014 EC Submitted Draft

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 2 2

TABLE OF CONTENTS

1	 INTRODUCTION .. 5

2	 SERVICE DISCOVERY .. 6	

2.1	 ICO CLASSIFICATION AND INTELLIGENT DISCOVERY ... 7

3	 TECHNOLOGIES ... 7	

3.1	 REST .. 7	
3.2	 JAVA EE ... 8	
3.3	 CONCLUSION .. 9

4	 SERVICE DISCOVERY IMPLEMENTATION .. 9	

4.1	 GLOBAL IMPLEMENTATION .. 9	
4.2	 IMPLEMENTATION OF ENHANCED MECHANISMS ... 10

5	 ICOS DISCOVERER ... 12	

5.1	 INTERFACES TO DATA MANAGEMENT SERVICE (NUIG) 14	
5.2	 INTERFACES TO FILTERING .. 15	
5.3	 INTERFACES TO CEP MODULE (ATOS) .. 16	
5.4	 INTERFACES TO ORCHESTRATION (SILO) ... 17

6	 CONCLUSION AND NEXT STEPS ... 18

7	 REFERENCES ... 19	

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 3 3

LIST OF FIGURES

FIGURE 1. VITAL ARCHITECTURE ... 6	

LIST OF TABLES

TABLE 1. EVENTS CATEGORIZATION .. 7	
TABLE 2. REST DATA ELEMENTS .. 8	
TABLE 3. SERVICE DISCOVERY DESCRIPTION ... 9	
TABLE 4. GET ICOS MOBILITY ... 11	
TABLE 5. GET ICOS LOCALIZER SERVICE .. 11	
TABLE 6. GET ICOS CONNECTION STABILITY ... 11	
TABLE 7. EXAMPLE VITALSENSOR ... 12	
TABLE 8. CONNECTION TO DMS .. 13	
TABLE 9. NUMBER OF ICOS .. 13	
TABLE 10. GET ICOS ... 13	
TABLE 11. GET ICO ... 13	
TABLE 12. DMS - GET ALL METADATA ... 14	
TABLE 13. DMS - GET SPECIFIC MEASUREMENT ... 14	
TABLE 14. DMS - POST CHILDREN .. 14	
TABLE 15. FILTERING - CONNECTION TO SD .. 15	
TABLE 16. CEP - GET IOT SYSTEMS .. 16	
TABLE 17. CEP - GET IOT SYSTEM ... 16	
TABLE 18. CEP - SUBSCRIBE OBSERVATION STREAM .. 16	
TABLE 19. CEP - UNSUBSCRIBE OBSERVATION STREAM ... 17	
TABLE 20. VOB - SEARCH SERVICE ENDPOINTS ... 17	
TABLE 21. VOB - SERVICE REGISTRATION MANAGEMENT .. 18	

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 4 4

TERMS AND ACRONYMS

API Application Programming Interface

BPM Business Process Management

CEP Complex Event Processing

DMS Data Management Service

HTTP Hypertext Transfer Protocol

ICO Internet-Connected Object

IoT Internet of Things

JAVA EE Java Enterprise Edition

JSON JavaScript Object Notation

JSON-LD JSON for Linked-Data

OWL Web Ontology Language

RDF Resource Description Framework

REST Representational State Transfer

SOAP Simple Object Access Protocol

SPARQL SPARWL Protocol and RDF Query Language

URI Uniform Resource Identifier

URN Uniform Resource Name

VOB VITAL Orchestration / BPM Module

W3C World Wide Web Consortium

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 5 5

1 INTRODUCTION

This deliverable specifies the architecture and features of the Service Discovery
module and positions it in the VITAL framework. It also gives details about its
implementation.
The main task of this component is to provide the means for discovering ICOs, IoT
services and IoT data that are virtualized in the VITAL platform. The VITAL Service
Discovery module is additionally enhanced through the use of smart predictive
mechanisms to allow the largest services. Other VITAL modules (e.g., CEP, Filtering,
Orchestration) will use the functionalities of the Service Discovery to operate on the
IoT resources that are needed for their particular business context.
For example, the Filtering module will access the Service Discovery module in order
to access a list of ICOs, to which it will apply its filtering techniques to reduce
unwanted information.
A key element of the Service Discovery module will be the ICOs Discoverer. It will
provide tools for discovering ICOs and data streams, using inputs such as location
and type. The ICOs Discoverer plays an important part in ensuring that the data sets
which are accessed, processed and visualized are restricted to those that are
relevant to the application context, in compliance with the policies of every physical
network.
Please note this document is a first version. As such it will present the main
architecture, the main directions to be taken and the advances so far achieved within
the project with regard to ICOs discovery and how this relates to other modules of the
VITAL architecture. It provides the architecture of the ICOs Discoverer module,
leaving the implementation of the other components for the final version, deliverable
at a later stage. This document will be continuously developed to reflect the
advances and outcomes achieved as the project proceeds. Following the project
advances, The second and final releases of this document will reflect these advances
with updates and revisions covering specification as well as implementation issues.
The deliverable is produced with to distinct audiences in mind: first, VITAL
consortium members, notably researchers and engineers, who require the
functionalities of the Service Discovery Module in order to develop their components;
and second, external researchers and developers who want to use VITAL IoT
resources in the development of their own applications.
The document is structured as follows. We first introduce the Service Discovery and
its features; we present the technologies we are using in development; we show how
the ICO Discoverer is implemented, designed, finalised and connected to the other
modules of the VITAL architecture. We conclude the deliverable with a summary and
an outline of the next steps.

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 6 6

2 SERVICE DISCOVERY

The Service Discovery (SD) module is responsible for discovering ICOs, data
streams, and services and is horizontally integrated in the VITAL platform as shown
in Fig. 1. Furthermore, it will deal with IoT resources requested by other modules
without regard to the underlying platforms, focusing only on the meaning of the
information.
Fig. 1 also shows how the Service Discovery interacts directly with the Data
Management Service (DMS) which has storage capabilities, and where the various
data streams (and their metadata) are modelled and formatted according to the
VITAL ontology – see [Vital-D3.1.1-2014].

Figure 1. VITAL Architecture

The other modules in the architecture (CEP, Filtering, Orchestration) will use the
functionalities of the Service Discovery to access IoT resources according to their
particular business context. For example, to validate the Use Case (UC07) described
in [Vital-2.2-2014], the CEP Module will access the Discoverer in order to retrieve the
ICOs available in a defined location.

X-GSN xively IoT Platforms

Data Sources

Platform Provider Interface (PPI)

XML/JSON2RDF Conversion

Data Management

Added Value Services
Platform Agnostic

Management, Monitoring
and Governance

Virtualised Universal Access Interfaces (VUAIs)

FIT Hi ReplyMobile Broker

Platform Access and Data Aquisition Layer

VITAL IoT Data Adapter

CEPOrchestrationFiltering

Development
Tools

Management
Tools

Governance
Tools

Smart City
Applications and Tools

Data Management Services

ICO & Services Discovery

Data

Open Data Open Data
London

RDFS OWL OWL RDFS
Data Data

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 7 7

2.1 ICO classification and Intelligent Discovery

The Service Discovery has been implemented incrementally, starting with a
basic version. It relies on a classification of the ICO such as that shown in

Table 1. In this example, an ICO is classified by reference to its motion and further
qualified with information about the connectivity and localization capabilities of the
device itself. This will allow the Service Discovery to include in its results information
regarding the data availability of mobile devices in a defined area.

Table 1. Events Categorization

ICOs Localization Connection

Fixed continue/
intermittent

continue/
intermittent

Mobile - predictive
pattern

continue/
intermittent

continue/
intermittent

Mobile - random
pattern

continue/
intermittent

continue/
intermittent

To enhance the service and make the discovery intelligent, the VITAL module will be
equipped with smart predictive mechanisms by which it will be able to forecast the
connectivity or data availability of a specific device based on its classification. We
discuss these models in Section 6.

3 TECHNOLOGIES

In this chapter, we offer a short review of the technologies that could potentially have
been used for the implementation of the Service Discovery. The details (heuristic
details on data model and data format for Linked Data) are in deliverable Vital-
D3.1.1-2014. We introduce the REST architecture and its basic concept. Then we
briefly discuss JAVA EE as a programming technology for developing the REST
interfaces and manipulating JSON data.

3.1 REST

Representational State Transfer (REST) is a term coined by Roy Fielding in 2000
[RFielding00] to refer a software architectural style.
Before the introduction of REST, the first generation web services relied on
exchanging XML packets conforming to SOAP (Simple Object Access
Protocol) specification using HTTP protocol.
SOAP and XML are now considered too heavy, and HTTP itself has sufficient
capabilities to allow applications to communicate over the network.

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 8 8

REST ignores the details of the components’ implementation and protocol syntax in
favour of focusing on the roles of components, the constraints on their interaction
with other components, and their interpretation of significant data elements. It
encompasses the fundamental constraints on components, connectors, and data that
define the basis of the Web architecture, and thus the essence of its behaviour as a
network-based application.
REST components communicate by transferring a representation of a resource in a
format matching one of an evolving set of standard data types, selected dynamically
based on the capabilities or desires of the recipient and the nature of the resource.
REST’s data elements are summarized in Table 2.

Table 2. REST Data Elements

Data Element Modern Web Examples

resource the intended conceptual target of a hypertext reference

resource identifier url, urn

representation html document, jpeg image

representation metadata media type, last-modified time

resource metadata source link, alternates, vary

control data if-modified-since, cache-control

A resource represents the key abstraction of information in REST. Any information
that can be named can be a resource: a document or image, a temporal service, a
collection of other resources, and so on.
Web services APIs that adhere to the architectural constraints are called RESTful.
HTTP-based RESTful APIs are defined with these aspects:

• base URI, such as http://example.com/resources/
• an Internet media type for the data. This is often JSON but can be any other

valid Internet media type (e.g. XML, Atom, microformats, images, etc.)
• standard HTTP methods (e.g., GET, PUT, POST, or DELETE)
• hypertext links to reference state
• hypertext links to reference related resources

3.2 Java EE

Originally specified by Sun in 1999, Java Enterprise Edition (formerly J2EE) is
currently the most widely used web programming technology.
Java EE offers many advantages: independence, portability, multi-layer structure
system, efficient development, scalability and stable usability to name but a few,
making it a platform of first choice for building web-based application systems. Many

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 9 9

implementations are available, both commercial (IBM, HP, Sun, Oracle, etc.) and
open-source (WildFly, Apache Geronimo, etc.).
For the development of the Service Discovery module, we have used WildFly
(http://www.wildfly.org), formerly known as JBoss AS, not least because it supports
the latest standards for REST-based data access including JSON.

3.3 Conclusion

The ability of REST to fully leverage the protocols and standards that power the
World Wide Web, combined with its simplicity relative to SOAP-based approaches,
have contributed to the position where it is now the preferred technology for building
web services, including services from large vendors such as Google, Yahoo, Amazon
and Microsoft.
In addition, the considerations dealt with in Deliverable [Vital-D3.1.1-2014] (Virtual
Models, Data and Metadata for ICOs, V1), also point to REST as the technology that
better suits the communications between the different VITAL modules.
Within the VITAL context, we therefore decided to adopt REST for the
communication between the different modules of the architecture.

4 SERVICE DISCOVERY IMPLEMENTATION

4.1 Global implementation

The Service Discovery is accessible through a RESTful web service, which exposes
information like the context, a description, its status and the operations it offers.
Table 3 shows a résumé of the operations available so far. The ConnDMS, for
example, gives information about the status of the connection with the Data
Management Service.

Table 3. Service Discovery description

{
 "@context":"http://vital-iot.org/contexts/service.jsonld",
 "type":"ServiceDiscovery",
 "description":"This is the VITAL Service Discovery module.",
 "status":"running",
 "msm:hasOperation":
 [
 {
 "type":"ConnDMS",
 "hrest:hasAddress":"BASE_URL/discoverer/ConnDMS",
 "hrest:hasMethod":"hrest:GET"
 },
 {
 "type":"nICOs",
 "hrest:hasAddress":"BASE_URL/discoverer/nICOs",
 "hrest:hasMethod":"hrest:GET"
 },
 {
 "type":"getICOs",
 "hrest:hasAddress":"BASE_URL/discoverer/getICOs",
 "hrest:hasMethod":"hrest:GET",

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 10 10

 "hrest:hasParameters":"double:longitude, double:latitude, double:radius,
string:ObservationProperty"
 },
 {
 "type":"getICO",
 "hrest:hasAddress":"BASE_URL/discoverer/getICO",
 "hrest:hasMethod":"hrest:GET",
 "hrest:hasParameters":"string:uri"
 },
 {
 "type":"getICOsMobility",
 "hrest:hasAddress":"BASE_URL/discoverer/getICOsMobility",
 "hrest:hasMethod":"hrest:GET",
 "hrest:hasParameters":"string:mobilityType"
 },
 {
 "type":"getICOsConnectionStability",
 "hrest:hasAddress":"BASE_URL/discoverer/getICOsConnectionStability",
 "hrest:hasMethod":"hrest:GET",
 "hrest:hasParameters":"string:stabilityType"
 },
 {
 "type":"getICOsLocalizerService",
 "hrest:hasAddress":"BASE_URL/discoverer/getICOsLocalizerService",
 "hrest:hasMethod":"hrest:GET"
 }
]
}

In this first version of the Deliverable, we present the features of the ICOs
Discoverer, leaving implementation of the services and the Data Streams Discoverer
to the next version.

4.2 Implementation of enhanced mechanisms

In order to support the above functionalities, the device description is enriched with
some properties as defined in Deliverable [Vital-D3.1.1-2014] as follows:

• hasMovementPattern, a mandatory property that links to an instance of
MovementPattern;

• hasLocalizer, an optional property that links to an IoT service specification
that provides access to the current location of the sensor.

• hasNetworkConnection, an optional property that links to an instance of
NetworkConnection.

The property of the ICO MovementPattern gives information related to the motion of
a device. In the basic version of the Discovery module, the ICO movement pattern is
defined as Stationary, indicating that the ICO is not moving at all and the device
can be characterized with information about its location (hasLastKnownLocation).
If this property is not defined, there is no information about the sensor location.
In a more “advanced“ version of the Discovery module, the mobility of a device

can be defined by two possible types of MovementPattern: Predictive and
Random. The first provides additional information that allows future movement
and locations to be “predicted” (e.g. by defining the direction and the velocity),

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 11 11

as shown in Table 4. In Deliverable [Vital-D3.1.1-2014], we specified that a
mobile sensor in a system that supports a localization service should include

the property hasLocalizer, as defined in
Table 5. The localizer service can then rely on information transmitted by the sensor
itself (e.g. through a GPS receiver), or alternatively it can use an external tracking
system. In either case, the Discovery service will provide a list of objects that support
the localizer service.

Table 4. Get ICOs Mobility

 Get ICOs Mobility
Description Used to retrieve information about the Mobility of the ICOs
URL BASE_URL/discoverer/getICOsMobility
Method GET
Input mobilityType

Output Information about the ICOs mobility, i.e., Fixed, Mobile (in this case it provides additional
details about the kind of mobility, predicted or random). The data follows the JSON-LD
format.

Table 5. Get ICOs Localizer Service

 Get ICOs Localizer Service
Description Used to search the ICOs that provide a localizer service, e.g. by giving access to its local

GPS receiver
URL BASE_URL/discoverer/getICOsLocalizerService
Method GET
Input -
Output List of ICOs with localizer service

The information regarding connection stability (
Table 6) indicates whether the sensor is connected continuously or intermittently to a
communication network.

Table 6. Get ICOs Connection Stability

 Get ICOs Connection Stability
Description This interface is used to get information about the type of connection of the ICOs
URL BASE_URL/discoverer/getICOsConnectionStability
Method GET
Input connectionType

Output It returns connectivity capabilities about ICOs in JSON-LD format

Opportunistic filtering, orchestration and processing of complex events from multiple
heterogeneous Cloud resources will allow diverse silos to be integrated horizontally.
In this respect, the VITAL concept moves beyond the Internet of Things by
referencing Cloud computing associated with the Internet of Things; we refer to this
as “the Cloud of Things” (CoT) [PLM+14] [PLM2+14].

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 12 12

5 ICOS DISCOVERER

Deliverable [Vital-D3.1.1-2014] provides information on the data models and
ontologies used by VITAL to describe the sensor/ICO.
In the short example in Table 7, we can observe the parameters used to represent a
VitalSensor, i.e. name, type, VITAL URI and description. Meaningful information
used by our ICOs Discoverer, such as the location and the observed properties, is
stored in this last container.

Table 7. Example VitalSensor

We present below a synopsis of the ideal interfaces that should be supported by the
Discovery Service in order to satisfy requests from other modules of the architecture
(e.g. CEP). Note that the list below does not give the exhaustive details of them but
states the basis. The on-going works on Tasks 4.2, 4.3, and 4.4 may enrich and in
case mutualize them. Final release of this document (D4.1.2) will detail the actual
interfaces to be implemented in VITAL.
To retrieve ICO information, the Discoverer presents different functions, such as:

• ConnDMS (Table 8).
• nICOs (Table 9) is an interface that accepts the GET method, and returns the

number of ICOs available in the DMS.
• getICOs (Table 10) is a function that outputs the ICOs available in a

specified area identified by the parameters in the input: latitude,
longitude, radius. The kind of information that has to be retrieved using
the observationProperty field can also be specified.

getICO (

• Table 11) is used to obtain information regarding a specific ICO, characterized
by its URI in the VITAL platform.

Virtual Models, Data and Metadata for ICOs – Doc ID: VITAL-D311-300814-draft

Copyright © 2013, 2014 VITAL Consortium 19 19

mapped to rdfs:label and the key description will be mapped to
rdfs:comment. We then specify a number of prefixes that can be used in the
JSON-LD description to reduce the length of keys by specifying them as so-called
terms. Terms are automatically expanded using the provided prefix URI. As an
example, the term geo:lat would be expanded to http://www.w3.org/2003/
01/geo/wgs84_pos#lat. Finally we specify type specifications that declare that a
value given for the key ssn:madeObservation or hrest:hasAddress7 should be
mapped to a node id instead of a string. All these mappings are completely
transparent to developers and can be ignored by clients. They are only relevant if the
JSON-LD file is mapped to RDF triples internally. Together, they reduce the
complexity of the resulting JSON-LD file and make it both smaller and easier to read
and understand for JSON developers.

3.3.3 Sensor Description Example

To illustrate the resulting sensor descriptions, we give a short example for a sensor
description (in JSON-LD format) in Figure 5. The example uses an external version
of the context specification for VITAL sensors that we have just described. This
further reduces the size of the JSON-LD file. VITAL clients can access the external
context file at http://vital-iot.org/contexts/sensor.jsonld if
necessary. However, we expect that this will not be necessary for most scenarios
and normal operation. The context file can also be cached on the client side,
because it is independent of a specific VITAL sensor and can be reused.

Figure 5: Example Sensor Description

7 see Section 5.2 for more information about hrest and the hRESTS ontology.

{
 "@context": "http://vital-iot.org/contexts/sensor.jsonld",

 "name": "TemperatureSensor No.123",
 "type": "VitalSensor",
 "description": "This is an example sensor",
 "uri": "http://www.example.com/vital/sensor/123",
 "hasLastKnownLocation": {
 "type": "geo:Point",
 "geo:lat": "53.2719",
 "geo:long": "-9.0489"
 },
 "ssn:observes": [
 {
 "type": "http://lsm.deri.ie/OpenIoT/Light",
 "uri": "http://www.example.com/vital/sensor/123/light"
 },
 {
 "type": "http://lsm.deri.ie/OpenIoT/Temperature",
 "uri": "http://www.example.com/vital/sensor/123/temperature"
 }
],
 "ssn:madeObservation":
 "http://www.example.com/vital/sensor/123/obsvn/1"
}

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 13 13

Table 8. Connection to DMS

 Connection to DMS
Description It gives information about the status of the connection with the DMS.
URL BASE_URL/discoverer/ConnDMS
Method GET
Input -
Output {

"@context": "http://vital-iot.org/contexts/service.jsonld",
"type": "ServiceDiscovery/ConnDMS",
"hrest:hasAddress": "BASE_URL/ConnDMS",
"hrest:hasMethod": "hrest:GET",
"hrest:status": "OFF "
}

Table 9. Number of ICOs

 Number of ICOs available
Description This interface gives information about the number of ICOs available in the DMS
URL BASE_URL/discoverer/nICOs
Method GET
Input -
Output Number of ICOs available

Table 10. Get ICOs
 Get ICOs
Description The Discoverer queries the DMS in order to get ICOs available in a defined area. It is also

possible to filter the ICOs in function of the observed properties.
URL BASE_URL/discoverer/getICOs
Method GET
Input Filtering parameters.

Example format:
{
 double:“latitude”,“longitude,“radius”, string:”observedProperty”
}

Output List of ICOs with capabilities metadata in JSON-LD format

Table 11. Get ICO

 Get ICO
Description The Discoverer queries the DMS in order to get 1 specified ICO characterized by its URI
URL BASE_URL/discoverer/getICO
Method GET
Input URI.

Example format:
{
 string:”URI”
}

Output Capabilities and information about ICO in JSON-LD format

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 14 14

5.1 INTERFACES TO DATA MANAGEMENT SERVICE (NUIG)

Discovery uses Data Management Service (DMS) to GET data by use of parameters.
It is possible to get metadata, measurements and children (all or specific ones). New
children can be added to an existing child with POST.

Table 12. DMS - Get all metadata

 Get all metadata
Description VITAL pulls from an IoT system / service / sensor its metadata.
URL BASE_URL/metadata
Method GET
Input -
Output Example

{
 "name": "temperature-test-1",
 "description": "Reports current temperature",
 "uri": "sensors.test.com/125",
 "location": {
 "long": -1,
 "lat": 1
 }
}

Table 13. DMS - Get specific measurement

 Get specific measurement from specific child
Description VITAL pulls from child its measurements
URL BASE_URL/children/:childID/measurements/125
Method GET
Input -
Output Example

{
 "125": {
 "time": "2014-11-10T10:07:02+01:00",
 "temperature": 18.4
 }
}

Table 14. DMS - Post children

 Post children to specific child
Description VITAL pushes children to child
URL BASE_URL/children/:childID/children
Method GET
Input Example

{
 "123":{
 "metadata": {
 "name": "temperature-test-1",
 "description": "Reports current temperature",

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 15 15

 "uri": "sensors.test.com/125",
 "location": {
 "long": -1,
 "lat": 1
 }
 },
 "measurements": {
 "125": {
 "time": "2014-11-10T10:07:02+01:00",
 "temperature": 18.4
 }
 },
 "children":{
 "valid": true
 }
 }
}

Output -

Additional details regarding the concept of children, parameters and the above
interfaces can be found in the on-going deliverables D3.1.2 and D3.2.1 of the VITAL
consortium.

5.2 INTERFACES TO FILTERING

The Filtering module offers mechanisms for filtering data and metadata which are
obtained from different sources and stored in the VITAL DMS. It communicates
directly with the Service Discovery to retrieve data, to which filtering mechanisms are
then applied.
The module uses an interface (ConnSD) to confirm the status of the connection

with the Service Discovery (
Table 15).

Table 15. Filtering - Connection to SD

 Connection to Service Discovery
Description It gives information about the status of the connection with the SD.
URL BASE_URL/ConnSD
Method GET
Input -
Output {

"@context": "http://vital-iot.org/contexts/service.jsonld",
"type": "Filtering/ConnSD",
"hrest:hasAddress": "BASE_URL/ConnDMS",
"hrest:hasMethod": "hrest:GET",
"hrest:status": "ON"
}

Another interface request by the Filtering module is Get ICOs (see Table 10). It
indeed queries the Discoverer in order to get data from a certain area, and then
makes elaboration on it. The type of elaboration is defined trough a mathematical

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 16 16

operator (string:operation) i.e., AVG, MIN, MAX and trough a value
(double:value).

5.3 INTERFACES TO CEP MODULE (ATOS)

CEP uses Service Discovery to access IoT resources and their observation data
characteristics, and also to subscribe to and unsubscribe from observation streams
of ICOs. To deliver these features, CEP requires the Discoverer services and
functionality described in Tables 16-19.

Table 16. CEP - Get IoT systems

 Get IoTSystems
Description CEP queries the discoverer for registered underlying IoT systems. This is used by the

CEP for acquiring the active IoT systems and populating lists for data source selection.
URL BASE_URL/iotsystemSearch
Method GET
Input Filter options on location covered, or type of system.
Output List of IoT systems with any metadata information maintained by VITAL in

JSON-LD format

Table 17. CEP - Get IoT system

 Get IoTSystem
Description CEP queries the discoverer for a specific underlying IoT platform. This is used by the CEP

for acquiring the observation data and its characteristics to be used in CEP stream
emitters.

URL BASE_URL/getIoT
Method GET
Input Example format:

{
 “IoT_system”: { “systemId”: “sid”, “componentId”:”cid” } // cid is optional
}

Output Metadata of IoT System in JSON-LD format

Table 18. CEP - Subscribe observation stream

 Subscribe to Observation Stream
Description CEP subscribes to the observation stream of a specific IoT System or ICO.
URL BASE_URL/subscribeObserver
Method POST
Input Example format:

{
 “IoT_system”: { “systemId”: “sid”, “componentId”:”cid” }
OR
 “Ico” : { “componentId”:”cid” }
}

Output CEP subscribed to Observation stream of the Iot System / ICO

{
 “subscription_id”: { “9236438ac38045188e63f47af9ced8dd” }
}

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 17 17

Table 19. CEP - Unsubscribe observation stream

 Unsubscribe from Observation Stream
Description CEP unsubscribes from the observation stream
URL BASE_URL/unsubscribeObserver
Method POST
Input Example format:

{
 “subscription_id”: { “9236438ac38045188e63f47af9ced8dd” }
}

Output CEP unsubscribed from Observation stream of the Iot System / ICO

Additional interfaces requests by the CEP module are Get ICOs (as in Table

10) and Get ICO (as in
Table 11).

5.4 INTERFACES TO ORCHESTRATION (SiLo)

The goal of VITAL’s Orchestration/BPM module (VOB) is to achieve cross-platform
and cross-business-context process integration, supporting VITAL’s overall goal of
providing an abstract digital layer over the application silos of the modern smart city.
To this end, VOB allows for definition of new VITAL eServices that combine multiple
underlying services and processes (as homogenized by the VITAL platform) and
these can be called by the applications. VOB requires the following Discoverer
services/functionality:

Table 20. VOB - Search service endpoints

 Search service endpoints
Description VOB queries the Discoverer for service endpoints and the supported services available in

the specific VITAL platform deployment. These are services offered by the sub-
components (e.g. CEP, data services), e.g. data streams offered by an IoT system for
specific ICOs in an area, data streams related to energy consumption in a specific
geographic area, a specific CEP service.

This is used by the VOB designer application.

URL BASE_URL/serviceSearch
Method GET
Input Filtering parameters in JSON for searching based on location, IoT system, service type, or

a specific ontology.

Example format:
{
 “location”: { “long”: “x”, “lat”: “y”, “range”: “r” } // or polygon definition
 “IoT_system”: { “systemId”: “sid”, “componentId”:”cid” } // cid is optional
 “ServiceType”: “type” // type taxonomy that groups services
 “Ontology”: “o” // specific ontology from the VITAL unified data model
}

Output List of services in JSON-LD format

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 18 18

Table 21. VOB - Service registration management

 Service registration management
Description VOB registers or de-registers the orchestrated services that it manages / offers via the

VUAIs to applications or via the internal REST API to other VITAL modules.
URL BASE_URL/serviceRegistration
Method POST
Input Service metadata, action {register|de-register}

Example format:
{
 “serviceDescription”: { “name”: “…”, “URI”: “…”, “type”:”…”, … }
 “accessPolicy”: { “role1”: “RW”, “role2”:”R”, … }
 “action”: “register | de-register”
}

Output Status code {success with serviceID & metadata | failure} in JSON-LD

format

The VOB will work also using supplementary interfaces above defined, such as

Get ICOs (see Table 10) and Get IoTSystems (see
Table 16).

6 CONCLUSION AND NEXT STEPS

In this first release of this document, we have introduced the Service Discovery (SD)
module in the VITAL architecture. We have positioned it within the global
architecture, presented the requirements and expectations of the module and
explained our reasoning for the technical implementation choices we have made.
This document also describes the main interfaces and the current status of the
service, setting out the next steps and the directions we will follow to deliver the full
service.
We have chosen an iterative implementation, progressively adding more services
and allowing the discovery of more item types based on classification of ICOs, flows
and services. In order to enhance the service that can be provided by the VITAL
framework, the Service Discovery will embed different predictive model mechanisms,
miming approaches such as the ones in [BJR+08], [MTBSS+12], and [MSTS+13].
All these mechanisms are being investigated, designed and evaluated by VITAL
Consortium partners; the next release of this document will be enriched by
descriptions of these mechanisms in the context of the overall project development.

Deliverable 4.1.1: Intelligent virtualized discovery of resources V1

Copyright 2014 VITAL Consortium 19 19

7 REFERENCES

[BJR+08] G. Box, G.M. Jenkins, and G.C. Reinsel, “Time Series Analysis:
Forecasting and Control”, fourth edition, Wiley, 2008.

[MTBSS+12] M. Marchini, M. Tortonesi, G. Benincasa, N. Suri, C. Stefanelli,
“Prediction Peer Interactions for Opportunistic Information Dissemination Protocols”,
in IEEE Symposium on Computers and Communications (ISCC), July 2012.

[MSTS+13] A. Morelli, C. Stefanelli, M. Tortonesi, N. Suri, “Mobility Pattern prediction
to Support Opportunistic Networking in Smart Cities”, in International Conference on
Mobile Wireless Middleware, Operating Systems and Applications (MOBILWARE),
November 2013.

[PLM+14] R. Petrolo, V. Loscrí, N. Mitton, “Towards a Smart City based on Cloud of
Things,” in ACM International MobiHoc Workshop on Wireless and Mobile
Technologies for Smart Cities (WiMobCity), August 2014.

[PLM2+14] R. Petrolo, V. Loscrí, N. Mitton, “Towards a Smart City based on Cloud of
Things,” in IEEE Multimedia Communications Technical Committee (MMTC), vol 9.,
Number 5, Special Issue on: Technologies, Services and Applications for Smart
Cities, September 2014.

[RFielding00] R. Thomas Fielding, “Architectural Styles and the Design of
Network-Based Software Architectures”, Ph.D. Dissertation, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[Vital-2.2-2014] J. Soldatos, J. Kaldis et al. Vital Project, Deliverable D2.2,
“Reference and Validation Scenarios for IoT virtualization”, April 2014.

[Vital-D2.3-2014] J. Soldatos, J. Kaldis et al. Vital Project, Deliverable D2.3,
“Virtualization Architecture and Technical Specifications”, June 2014.

[Vital-D3.1.1-2014] G. Schiele, T. Geraghty et al. Vital Project, Deliverable D3.1.1,
“Virtual Models, Data and Metadata for ICOs V1”, September 2014.

